DISTRIBUTION FUNCTION OF ISOTROPICALLY SCATTERED
PARTICLES IN ANISOTROPIC STRUCTURES

A. S. Dolgov UDC 539.121.7+539.125,52

A study is made of the properties of solutions for a one~dimensional single-velocity transport
equation for particles in a medium in which the probabilities of the elementary processes de-
pend on the direction, and the scattering indicatrix (phase function) is spherical, It is shown
that the linear parameter of the asymptotic exponential reduction in the global particle density
when orientational inhomogeneity is allowed for can differ strongly from the value found by
averaging the probabilities of the elementary processes over the directions, The role played
by the structure of the orientational inhomogeneity is considered. The results are generalized
to the case of anisotropy of the scattering.

To treat the transport of particles or radiation in a medium rigorously, one must solve the correspond-
ing transport equation (see, for example, [1,2]). This equation has the simplest form when the scattering in-
dicatrix (phase function) is spherical, a situation that arises in a number of cases. In solving transport
equations, one generally assumes, implicitly or explicitly, that the properties of the medium do not depend
on the direction in which a particle moves. But if we are concerned with anisotropic structures — for
example, crystals of dispersed media with well-defined orientation — the behavior of a particle must obvi-
ously depend in some manner on the direction on which it is moving. However, it is impossible to say in
advance how much the anisotropy affects the statistical characteristics of the transport process. Some
light has been cast on this problem by Lindhard [3], who has considered orientational effects associated
with the motion of charged particles in a crystal lattice. In this paper, we consider the one-dimensional
problem of the distribution of isotropically scattered particles in an infinite medium in which the probabili-
ties of scattering and absorption of particles are functions of the angle between the direction in which the
particles move and the normal to a plane that is an isotropic source of particles. The results are also
generalized to the case of anisotropic scattering.

If f(x, 1) is the particle distribution function, depending on the linear coordinate x and on u, which is
the cosine of the angle measured from the x axis, the transport equation, which describes the variation in
x of the distribution function, can be written in the form
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Here, X — Zg and Zg are the direction-dependent macroscopic absorption and scattering cross sec~
tions, respectively, and ¢ is the Dirac delta function. Note that the term "macroscopic cross section" is
merely another name for the reciprocal mean free path in the given direction.

Equation (1) is solved by a method similar to those used to solve problems in which the cross sec~

tions do not depend on the angles [1,2]. Generally, we are only interested in the global particle density,
ie., in
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For the function calculated in accordance with (2), we obtain

= - { (1 1 ( ___.—Esdp. . 1o { dy
q’(”)“ES — Slz+imp) € S pprTaly @)
2 L )

The expression (3) is the general solution of the problem for different dependences Z ) and 24 (). It
is a good idea to consider some special cases in which (3) reduces to persplcuous expressions that reveal

the effect of the anisotropy.
We assume that 2 () and Zg () are even functions (the "forward" and "backward" directions are on
an equal footing) and that £ Z “1 = p =const <1 (the scattering and absorption events are due to the same

centers),
Let
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Thus, we assume that the x axis coincides with the "least transparent” direction. The numerical
value of the parameter A determines the range of variation in the values of the cross sections.

Substituting (4) into (3), we obtain
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The integrand in (5) has two simple poles on the imaginary axis, *iw,, w; < A, which are found from
a transcendental equation, and four branch points, *ia, *iAa. The point w = 0 is not a pole, The integral
(5) is made up of the contribution from the residue, J, at the pole +iw; and the integral, I, around a contour

that circumvents the cut in the upper half-plane:
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The component (7) of the particle dehsity is usually called the asymptotic component, since it deter-
mines the behavior of ¢ (x) at large values of the argument [elementary estimates show that I, which is given

by (8), decreases faster than J].

“Thus, ¢ (x) decreases exponentially with increasing distance from the emitting plane with character-

istic linear parameter wo'i, which, as in the isotropic case, may be called the diffusion length. An approxi-

mate solution of the transcendental equation for w, is
(9
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This holds when (1 — b)/A « 1, i.e., when the absorption is weak, Thus, the diffusion length in the
meast transparent" direction depends very strongly on the extent to which the scattering absorption cross
sections are anisotropic. For example, if A = 0.7, the diffusion length for the region in which (9) is applic~
able is about twice as large as for the isotropic case with the same value of ¢ . If A is sufficiently small,
the diffusion length varies as A™1.

It is interesting to compare w,, the effective macroscopic cross section for the reduction of the par-
ticle density along the direction of the normal to the emitting plane in the asymptotic region, with the
analogous mean value
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It can be seen from (10) that this ratio varies within wide limits when A varies, When A =1, the ratio
is equal to unity, as it must; when A « 1, the ratio is ®3A /2., Thus, if A is small, i.e., the "transparency"
is strongly anisotropic, the particle density decreases much more slowly than one would expect from averag-
ing the characteristics; this is true even in the direction of least transparency.

Now suppose
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The step function (11) should be regarded as a natural approximation of all possible dependences Z =

Zu).

Integrating, we find a solution of the form (8) with
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The expression (13) holds if the absorption is weak. It is clear that a gap of arbitrarily small but
finite width with a vanishing value of A results in a reduction of w, to zero. This means that the particle
density does not decrease in the asymptotic region of large |x|. It can also be seen from (13) that deep
local dips in the cross sections reduce w; significantly only when Aj tends to zero faster than the width,

Bi ~ 41, of the corresponding interval of angles, It is therefore clear that in the case described by (9) we
have wy— 0 as A — 0, whereas if the cross sections satisfy the law
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this is not the case,

Note that all the above formulas, and also those used later, go over into the formulas for an isotropic
system (see, for example, [2]) in the corresponding special cases.

We now solve the problem for an anisotropic scattering law. If the distribution function is independent
of the azimuth, the original single-velocity transport equation can be written in the form
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The function R ) determines the distribution of the created particles over the directions. The scat-

tering indicatrix is nonspherical; gy, are the coefficients of the expansion in Legendre polynomials of the
angular scattering function. It is to be assumed that

1
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Under these conditions, Eq. (15) is satisfied by
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Equation (17) gives a system of algebraic equations for finding hy, (w); the order of the system is de-
termined by the highest index for which g, # 0. If
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then (16) becomes
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Substituting (19) and (20) into (18), we obtain the spatial and angle distribution of the density of
neutrons for arbitrary dependences R), Z), Zg (). Integrating (18) with respect to 4, we find the spatial

variation of ¢ (x), the global particle density. To integrate with respect to w, we must find the poles of the
function
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The most interesting poles of (21) are those that are determined by the equation
D = 0;
the reason is this: those for which lwp | is smallest are responsible for the asymptotic behavior of the

global density of neutrons in the case of weak absorption & — Z4 « Z) under very general assumptions con-
cerning the form of the functions R ), Z (), and Z4(p). Assuming that lwpl is small compared with
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(weak absorption), making elementary transformations in the expression (20) for D, and recalling that the
functions Z (u) and Zg(u) are even, we find
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Thus, the asymptotic solution gives an exponential decrease with linear parameter, |w,|™!, that de-
pends on Zg (), % (), and the degree of anisotropy of the scattering function in the laboratory frame. It is
readily seen that an anisotropy of the scattering reduces lwpl, i.e., it retards the decrease of ¢(x) with in-
creasing |x | for any dependences Z () and Zg(u ).
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